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INTRODUCTION

Asgard archaea are the closest prokaryotic relatives of eukaryotes from within which the latter emerged, and therefore key to our understanding of eukaryogenesis.
Asgard archaea have a markedly larger genome size than other archaea (Figure 1); however, we know little about how genome content has been shaped across asgard
evolution, in particular the role of inter-domain Horizontal Gene Transfer.
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Figure 2: Workflow for inter-domain HGT analysis.
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' Figure 5: Acceptor analysis. Dot sizes represent number of HGT gene trees where the acceptor is

placed at that given node. Colors represent the lineage used as seed for the tree. The acceptor was
defined as the MRCA of the biggest Asgard monophyletic group stemming from the seed protein.
Eukaryotic sequences were considered de facto Heimdall. Sub-lineage transfers are collapsed to the tip
node.
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Figure 3: Gene gain-loss dynamics across Asgard archaea. Mean duplication rate at each internal
node, counted per seed phylome as the ratio between the number of duplications by the total number of

gene trees that contain that node. Total protein count per proteome and species-specific duplications I —

displayed by color scale in terminal nodes. Gain percentage (green) is the sum of duplications and Enriched functions (Fig. (it o o o) T——
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hinting at a mechanism for the gene duplication, as well as lineage-dependent processes.

Figure 6: Network of functional relationships between KEGG enriched terms. Nodes are KEGG
Terms enriched (FDR <=0.1) in at least one lineage, edges represent functional relationships between
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Figure 4: Duplication rate (A) and transfer rate (B) per node for Asgard and TACK archaea. Figure 7: Network properties of HGT proteins within seed organism's interactome. (A) Number of
Duplication/Transfer rate (number of duplications/transfers normalized by the number of genes inferred connections (degree) of HGT proteins versus genes of vertical inheritance. (B) Number of connections
to be present in the node) for nodes stemming from the MRCA of Asgard and TACK archaea of HGT proteins with other HGT proteins vs with proteins of vertical inheritance.

CONCLUSIONS

We found that inter- (Fig.4B) and intra-domain (Fig.5) gene transfer is pervasive throughout asgard evolution, involving mostly metabolic genes (Fig.6) peripheral in
interaction networks (Fig.7), and bacterial transfer partners that co-occur in present-day metagenomic surveys. However, we found that transfer levels are not higher
than in other prokaryotes (Fig.4B) , and that gene duplications (Fig.4A), rather than transfers, likely underlie increased genome sizes in Asgard archaea. Hence,
consistent with their phylogenetic position, asgard genomes showcase a unique blend of prokaryotic-like transfer-driven and eukaryotic-like duplication-driven
evolution.
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